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Abstract 

For the average information gain by a quantal measurement of the first kind, an expression 
is suggested for a lower bound, which turns out to be non-negative. 

1. Introduction 

We envisage a statistical ensemble of  a very large number of  mutually 
independent identical quantal object systems. All samples are constructed 
in the same way. They have a small number of  degrees of  freedom, so that 
their observables may be represented on a corresponding Hilbert space ~ .  
Moreover, all samples are prepared and selected in the same way, so that 
the state of  the ensemble may be represented by a Hermitean positive 
statistical operator k on 3ft. Suppose k to be normalised by 

irk = i (Lt) 

Now we perform on all individual samples a quantal measurement of  
the first kind (Pauli, 1933). This is an abstract, highly schematised kind of  
measurement, which distinguishes between certain orthogonal subspaces 
, ~ a  of.J~'. For  simplicity we shall only consider the case when m has a 
discrete spectrum. If  the spectrum is partially or entirely continuous, sums 
over m in formal expressions have in general to be replaced partially or 
entirely by integrals. Their interpretation has then to be adapted to the 
situation that for continuous m neither the measurement nor the reading 
c a n  strictly be maximal. But in our considerations we shall use, in particular, 
a geometrical Euclidean representation, for which a generalisation from a 
discrete to a continuous spectrum is by no means obvious. 

We make the system ofsubspaces ~ , ,  complete by adding the complemen- 
tary subspace, which represents the incident of  no definitive measuring 
result. The orthogonality and completeness ofthe.~' , , ' s  and their dimension 
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328 H. J. GROENEWOLD 

d.  are then in terms of  thdr Hermitean projectors P .  expressed by 

v . P . = 8 _ v . ;  Y P . = l ;  trP.=d.  (I.2) 
a l  

If all d,, = 1, the measurement is called maximal. If there is just one P ,  ~ 1, 
it is called minimal or trivial; in fact it is then no measurement at all. 

Imagine that for every sample the measurement (the intermediate coupling 
between every object system and the co.'responding measuring instrument) 
and its result are entirely automatically performed and recorded (first step). 
Afterwards the records, which are stored in some classical macro-code, are 
read by an observer (second step). The ensemble, which before the measure- 
ment was represented by the original statistical operator 

k = Y . v . k P ,  0.3) 

is after the first step represented by (Liiders, 1951) 

k' = ~ P,, kPm = ~. (tr P,, k) (P,, kP,~:tr P,,k) (1.4) 

which I shall refer to as the truncated statistical operator. We may say that, 
owing to the intermediate interaction between the object system and the 
corresponding measuring instrument during the first step, the correlations 
between different subspaces o.T ~. and ~ t '  are completely lost, whereas the 
correlations inside every subspace J r ' ,  are completely conserved. 

The degree of mixing of the ensemble before and after the first step may 
(in suitable units) be measured by the entropy expressions 

S =  - t r k l n k  (1.5) 

S" ~= - t r  k" in k" (1.6) 

l f S  = 0, the original state is indivisible or pure. Because the transformation 
from k to k' is dissipative (Groenewotd, 1964), the entropy increase is 
non.negative 

S ' - S ; ~ O  (1.7) 

It' measures the loss of  correlation between the subspaces or, in other 
words, the loss of information about the ensemble in the first step. 

On the other, hand new correlations are in the first step established 
between the object samples and the corresponding record samples in the 
composite ensemble of objects, measuring instruments and records. This 
correlation is fully exploited in the second step, in which all object samples 
corresponding to the same reading result "m" of the records are collected 
into a subensemble represented by the normalised statistical operator 

k. ,"  = P . , kP ,  J t r P , ,  k ;  t r k . ,  ~ ~- l (1.8) 
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The non-negative normalised statistical frequencies or weights 

w . = t r P . k ;  w . > 0 ;  ~ HI .= I (1.9) 
i l l  

of these selected subensembles may be interpreted as the probabilities of 
the recordings "m'. The degree of mixing of such a subensemble is 

S." = - tr  k,," In k." (I. 10) 

Its average over the entire ensemble is 

$" = "~ w.S." (I.11) 

In the second step the average decrease of the degree of mixing is (as it 
should be) equal to the non-negative average information from the classical 
macro-readings of all recorded samples 

S' -- ~" = -tr (~ w.k.,') In (~ w.,k.,') + =~ w,. trk.," In k." 

= - ~  w.ln  w.  ~ 0 (!.12) 
m 

So there is a non-negative loss (I.7) of  information in the first step 
(which is characteristic for the quantal measurement) and a non-negative 
gain (1.12) of average information in the second step (which is characteristic 
for the classical reading). The problem of the present paper is, whether for 
an abstract ideal quantal measurement of the first kind with maximal 
reading, the overall information gain over the two steps, averaged over the 
entire ensemble, is always non-negative. In other words, whether 

s - $ ' > o  (1.13) 

may either be verified by a rigorous proof or falsified by a counter example. 

2. Matrix Representation 

If we choose in every subspace J F .  an orthonormal complete set of base 
vectors, they form together an orthonormal complete set in .~ .  The 
matrix ofk  with respect to this base may be divided into blocks with res~',ct 
to the subspaces. In the first step from the original k to the truncated k ~ all 
non-diagonal blocks are reduced to zero, whereas the diagonal blocks 
remain unaffected. By a suitable unitary transformation the latter may be 
brought into pure diagonal form. In this representation the matrix elements 
o fk '  may be written 

B~, ~,, a~,,; a~. > 0; ~a=,=w.; ~w==!  (r,s-~ 1,2,...) 
�9 i 

(2.1) 
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In the same representation the matrix elements o fk  in the diagonal blocks 
are also given by (2.1), whereas those in the non-diagonal blocks may be 
written in the form 

~=1= V(a=  a . ) ;  ~.,,;, -- x~,i, exp (ia_l,,,) 

= x . I . .  exp (-ia= I-) = ~-* I-- ( r e # n )  (2.2) 

The latter form is obvious for rows and columns with non-zero diagonal 
elements. For the remaining cases it is a consequence of the lemma, that 
wherever in a Hermitean positive matrix k a zero diagonal element occurs, 
all non-diagonal elements in the corresponding row and column must also 
be zero. 

In order to prove this lemmat; consider a Hermitean square root k t/2 
ofk  and two (column)vectors ~b and % Then owing to Hermitecity and the 
Schwarz inequality, we have 

I(@,kg~)l = lOk'/2,#,k"29~)l < ~k'/2~ll lk' /27]]  

= {(~, k~) (~,, kq~)}'/2 (2.3) 

Choosing for $ and 9~ base column vectors each with one element equal to 1 
and all other elements equal to O, this leads fbr the matrix elements of k 
to the inequality 

I k . t , l  < {k - - j . ,k . l . }  ''2 (2.4) 

from which the lemma follows at once. 
The effect of the first step in the measurement is now represented by the 

reduction of  the absolute values x . , i .  of all parameters ~,~-l- (m :# n) to 
zero. Those corresponding to zero diagonal elements of k' may from the 
beginning be chosen equal to zero. 

The eigenvalues Kj of the original normalised positive statistical operator 
k satisfy the determinantal equation 

d e t [ k - x j l  I=O ( j = l , 2  . . . .  ) (2.5) 

and the conditions 
,,, > O; X~j=l (2.0 

J 

Owing tO the latter conditions, k may be represented by a point with bary- 
r coordinates K~ ( j =  1,2,...) in a regular Euclidean simplex of unit 
height. In case the Hilbert space ~ has a finite number N of dimensions, 
we need a ( N -  D-dimensional simplex. Properly k is represented by the 
whole symmetric set {KI,KZ .... } of all points obtained by permutation of 
the g~ in {Kt,g2 .... }. So actually we need only a part (for finite Na  (l/N!)-th 
part) of the simplex. 

t I owe this direct proof to H. J. Brascamp. 
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The degrees of mixing (!.5); (!.6) now read 

331 

s=-2 jln j (2.7) 
$ 

S" = - Y_ a.lna=, (2.8) 

The function (2.7) may be represented in an additional Euclidean dimension 
by a convex hypersurface over the simplex. I shall refer to it as the surface 
o f  the S-hill. It might also be zeplesented without an additional dimension 
by the convex adiabatic sulfaces of constant S in the simplex. If I speak 
about inward or ou~'ard in the simplex it will be meant with respect to the 
latter hypersurfaces. That corresponds to upward or downward respectively 
on the S-hill. 

Now let us consider a fixed arbitrary truncated statistical operator k' 
represented by the symmetric set {a~,}. All compatible original statistical 
operators k, i.e. all k which in the first step would be transformed into this 
fixed k', may be found by variation of all parameters ~m,I~ in (2.2) with due 
observance of the conditions (2.6) for non-negative k. The corresponding 
representative sets {Kj} determine a region in the simplex, which in this 
sense is compatible with the truncated set {am,}. They also determine a 
compatible region on the surface of the S-hill. The highest points in the 
latter region correspond to the set {a~,} with an S-value given by (2.8). If 
we could find the lowest value Stain in this region and show that 

Smi. - ~"  > 0 (2.9) 

then (I.13) would be verified. 
In as far as the diagonal representation ofk '  has zero diagonal elements, 

the corresponding rows and columns of all compatible k also contain in 
this representation zero elements only. The c6rresponding dimensions may 
simply be omitted from the Hilbert space ~ and from the Euclidean 
simplex. If that has been done, the representative set {a,,,} of k' has only 
left positive barycentric coordinates and lies inside the simplex. 

3. Conjectured Lower Bound 

The convexity of  the S-surface suggests that in order to descend con- 
siderably in the compatible region, it may help to reduce the number of 
non-zero eigenvalues Kj and to make them as unequal as possible. 

We start with rearranging the rows and columns of the k-matrix in such 
a way, that diagonal elements a~. with equal index r instead of equal 
index m are brought together in diagonal b'ocks. This rearrangement 
depends on the numbering of the diagonal elements am, in the original 
blocks. Therelbre we consider separately each of all permutations of the 
a~. for every fixed m. 
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For a given permutation we choose all parameters ~e,~l~, in the non- 
diagonal blocks (r ~ s) equal to zero. If in the diagonal blocks we choose 

~',~I~, = exp ( i ~  - i~.~) (m -~ n) (3.1) 

they may by a suitable unitary transformation be brought into diagonal 
form with one diagonal element equal to 

v,---~a,~,. (r, ~ 0; ~ ,',-- I)  (3.2) 

and all other diagonal elements equal to zero. The degree of mixture of 
the corresponding compatible operator kc is 

Se = - ~  r, ln t; (3.3) 

lntermedtate between any fixed kc and k' we might define other special 
compatible operators ks by dividing the new diagonal blocks (for fixed r) 
into smaller sub-blocks and choosing in the non-diagonal sub-blocks the 
~:.,r., equal to zero instead of (3.1). This may be done for all combinations 
of the a, ,  for fixed r into sub-sets, k' is the extreme case of a ka for which 
all sub-blocks are 1-dimensional. For every ks which in this sense is inter- 
mediate between a certain k, and k' the number of zero eigenvalues is also 
intermediate. Further (because the transformations from kc to ks and from 

to k' are dissipative) we have then S~ < Sa < S'. 
If  we omit the dimensions of zero eigenvalues ofk' ,  its representative set 

lies inside the simplex. All ks and kc have still other zero eigenvalues and 
their representative sets lie on the boundary of the simplex. 

Before looking for the lowest value of S~, we check for all permutations 
that 

$, - ,f" ~ 0 (3.4) 

or with (1.10); (!.! 1) and (3.3) that 

- ~ .  velnv, - ~. w=ln w, + ~ a~ln a~. > 0 (3.5) 
�9 111 

For this purpose we determine the minimum of the left-hand member of 
(3.5) under the subsidiary conditions 

w.= ~a. , ;  v,= ~a~;  ~ a . , =  !; a.,>O (3.6) 

The exuemum or 
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with Lagrangian multiplier A is reached for 

-l-ln(~a,,)-l-ln(~a,~)§247247 (3.8) 

for all m and r, i.e. for 
a , . ,  = w = v , ;  ~ = 1 (3.9) 

The corresponding extremum of  the left-hand member of  (3.5) with (3.6) 
is zero and this is indeed a minimum. 

Owing to the convexity of  the S-function (2.7) the permutations of  the 
a , ,  for every fixed m which give the lowest value S o for Sc are obtained 
by numbering them in a non-increasing order 

a,,, > a,,~ for r < s (3.10) 

The eigenvalues r, of  the corresponding well-ordered compatible operator 
ko are so to say more unequal than those of any other operator kc. 

I f  we could show that So is equal to the lowest S-value Sin,, in the com- 
patible region of  the S-surface 

So = s . , ~  (3.1 !) 

then (2.9) and hence (1.13) would be verified. I conjecture that (3.11) holds 
(even for continuous spectra, with sums replaced by integrals). In the 
following sections I shall give some comments on this conjecture. 

4, Compatible Regions 
In case of  a maximal measurement (din = 1 for all m) and also in the case 

of  a pure original ensemble (k2= k; S = 0), all selected subensembles are 
p u n  (!~ 2 = k ,~  S ,  ~ = 0). In all these cases S" = 0 and then (I. 13) is trivial. 
The case o f  a minimal measurement (only one .Yfm = JW) is trivial in any 
Case. 

As the simplest non-trivial examples we consider a truncated k '  with 
only a finite number N of  non-zero eigenvalues. In order that the corre- 
sponding simplex may easily be drawn, we restrict N to 3 or 4 only. For 
N = 3 the only non-trivial case is d, = 1 ; d2 = 2. For N- -  4 there are three 
different non-trivial cases: (i) di = 1 ; d_, = 3, (ii) di = d2 = 2 and (iii) di = 
d, = 1; d3 ~ 2 (ofcourse m may be numbered in various ways). 

4.1. g - - 3  
We write the matrix representation of  a compatible k as 

k =  ~,* vT(ab) b - -  
~ * ~ / ( a c )  0 

(4.1.1) 
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o , b , c > 0 ;  a + b + c ~ l  0.1.2) 

The eigenvalue equation then reads 

- ~ + d - { ( l  ' y " ) a b +  (1 -z2)ac+bc}K+{1 - y 2 - z " } a b c = O  (4.1.3) 

independent of the phases of v and ~. In order to satisfy additionally the 
first condition of (2.6), the expressions within the curled brackets have to 
be non-negative. 

The simplex is a regular triangle. It appears that the compatible region is 
bounded by straight line segments parallel to the sides of the triangle. The 

|10I Ca-boo.O) ~ 

IO 1| ta.c.b.O) 

A" "x"K~ 
INjure I. 

typical shape depends on the relative magnitude of a, b, c and certain 
composite expressions. Figure 1 has been drawn for one choice with 
a>b>c. 

For the admitted combinations of the values 0 and 1 for y2 and z2 the 
solutions of (4.1.3) represent the operators kc defined in Section 3. The 
values of [y222] and of one of the corresponding permutations of(K~, •2, K~) 
are indicated in Fig. 1. The representative symmetric sets form the corners 
of the compatible region k' and ko in particular are represented by the most 
inward and outward set respectively. The latter forms the (six) corners of a 
truncated triangle which entirely encloses the compatible region. Therefore 
they determine the symmetric set of most outward points of the compatible 
region or lowest compatible points on the S-hill. 
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4.2. N = 4  
In  all cases we  have  

a,b,c,d> 0; 

I n  case (i) we write 

{- ~*v~) 
k = | , ,*v'(a~) 

\Pv'(a,O 

a + b + c + d = l  

T h e  co r r e spond ing  e i g e n v a h e  equa t ion  reads 

x 4 - x 3 + {(I - x" )ab  + (1 - .3 )  ac + (1 - z 2) ad  + bc + cd + db} K 2 

- {(1 - x 2 - . 3 ) a b c  + (!  - . 3  - z Z ) a c d +  (I  - z ~ =- x")adb + bed} x 

+ { 1  - x 2 - - . 3  - z 2 } a b c d = O  

i n d e p e n d e n t  o f  the phases  of" 2, v and  ~. In  case (ii) we write 

k= 

0 
o 

* ~ ( a c )  p*v ' (bc )  

~ , * V ' ( a d )  o*Vt (bd)  

T h e  e i g e n v a h e  equa t ion  n o w  reads 

,,V'(,,c) ~V'("/) \  

Pvl(bC)oc ~ ) 
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(4.2.0 

(4.2.2) 

(4.2.3) 

(4.2.4) 

x' - ~ + {(1 - r')ab + (1 -.3)ac + (1 - z')ad + (I - rZ)bc 
+ (! - F ) b d +  car} ,c ~ - {(1 - x 2 - . 3  - ?)abe + (1 - x ~ - z  ~ - s~)abd 
+ (1 - - . 3  --  z 2 ) a c d +  (1 - r ~ - s2)bcd}  x + {1 - x 2 - . 3  - z 2 - r 2 

- 8 2 + . 3 s  2 + z2r  2 - 2yzrscoscp + 2xyr  cos  ~b + 2 x z s c o s x } a b c d =  0 

(4.2.7) 

where  % ~ and X are  the  phases  o f  u~*p*a, ~*p and ~ * a  respectively. 

(4.2.6) 

T h e  e i g e n v a h e ' e q u a t i o n  then reads 

/.~ a ~V(at,) 
*v~ ' )  b 

| ~ p*V(bc) 
\[*V'(a,O -*v'(b,O 

k_-_ 

,,v'(ac) ~v'(ad)\ 

,~/(bC)oe "~b-d (ba~) 

x 4 -- K' + {ab + (1 - . 3 ) a c  + (1 - z 2 ) a d +  (1 - r2)bc  + (1 - s 2 ) b d +  cd} x:  

- { ( 1  - . 3  - rZ)abc + (1 - z 2 - s2 )abd  + (1 - ) , 2  - z2)acd + (1 - r 2 

- $Z)bcd} K + {1 - . 3  - z  2 - r 2 - s 2 + y 2 s 2  + z2r  2 - 2 y z r s c o s ~ } a b c d  

,~0 (4.2.5) 

where  q~ is the phase  o f u ~ * p * a .  In case (iii) finally we write 
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The simplex is a regular tetrahedron. The compatible region appears to 
be bounded by flat surface segments parallel to the sides of  the tetrahedron. 
The typical shapedepends on the relative magnitude of  a, b, c, dand certain 
composite  expressions. It may consist of  parts with crossing over connec- 
t ions  along edges and even multiple connections around holes. Figures 
2, 3 and 4 have tentatively been sketched for case (i), (ii) and (iii) respectively 
for one choice with a > b > c > d. 

[10o] (o-b.c.d.O)~/~~ 

[ooq to. ...x4 

F i ~  2. 

For the admitted combinations of  the values 0 and 1 for the relevant 
subset o f  x 2 ,  y 2, z 2 , r 2 , s 2, the solutions of the eigenvalue equation in question 
represent the operators kd and kc. At least some of the representative 
symmetric sets form the principal corners of  the compatible region. The 
values of  the relevant subset of  

/.2 $2] 
and of  one of  the corresponding permutations of (,q, •z, ~3, K,) are indicated 
in Figs. 2, 3 and 4 k' and k0 in particular are represented by the most inward 
and outward corners respectively. The latters the corners [24 in case 
(i); 12 in case (ii) or (iii)] of  a truncated tetrah~e r-on-[cut off around the 
corners and in ease (i) also arom~d the edges], which entirely encloses the 
compatible region. Therefore they determine the set of  most outward points 
of  the compatible region or lowest compatible points on the S-hill. 
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[~ o~ . 4 - . .  
t~,ol,..,.,.o.o.o~,. / / \  
to ~ ~ ] , ~  
[o ~],~ 

�9 .. .-~ a4 

F igure  3. 

[,,o~] - .  
[o ~oo] ,o.~.,.o.o,_.,~.. -~ ' , ,  \'~i 

2.1 
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4.3. N > 4  
Also for a number N > 4 of non-zer0 eigenvalucs of k', the representative 

set of ~ forms the complete set of corners (and at the same time most 
Outward points) of a symmetric truncated simplex. Equation (3.1 I) would 
be proved if we could show that the compatible region could not reach 
outside this truncated simplex. 

After inspection of the cases N < 4 it is perhaps not far-fetched to con- 
jecture that in general the compatible region will be bounded by fiat 
hypersurfaces parallel to the sides of the simplex, that the absolute values 
of the parameters ~,,~ ,, are bounded by 

x, , , l ,  < 1 (4.3. !) 

(apart from further mutual conditions), and that the whole compatible 
region does not reach outside the truncated simplex. It is in particular the 
last conjecture that counts. 

Ifa proofof(3.1 I) might be given for finite N, generalisation to an infinite 
number would still require special care. Still more so would generalisation 
to partially or entirely continuous spectra of re. For such generalisation an 
entirely different kind of proof might be preferable. 

5. Conclusion 

All  information has to be paid for somehow by a relatively high tax of 
aegentropy. Nevertheless this tax may sometimes appear small in practical 
units, o~ing to the smallness of Boltzmann's constant k. In speaking about 
loss and gain of information, I leave in this paper such a negentropy tax 
expressly out of  account. 

It is peculiar that for quantal measurements, that information about the 
ensemble of object systems may be partially lost in the first step ofcoupling 
with the measuring instrument, and gained only in the second step of reading 
of  the recorded measuring results. It is easy to design quantal measurements 
for which the loss is larger than the gain (e.g. by preventing maximal 
reading). But it appears difficult to see whether, for example the conjecture 
Lhat in a general quantal measuremet, t of the first kind with maximal 
reading the loss can never be larger than the gein, is correct. 

The problem is rather academic. Only a relatively simple proof might 
be expected to contribute considerably -to insight in quantum mechanics. 
It would not sccm wise to spend much labour on finding a very complicated 
proof. The problem might be settled, if perhaps some day somebody would 
happen to run up against a counter example: 
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